RIFT: TOWARDS SELF-DRIVING IP FABRICS WITH ZERO OPEX ROUTING

TONY PRZYGIENDA PRZ@JUNIPER.NET

DRAFT-PRZYGIENDA-RIFT @ IETF

JUNPE

DISCLAIMERS AND EXPECTATIONS

NONE OF THOSE THINGS CONSTITUTE COMMITMENTS TO PRODUCT SPECIFICATIONS, OFFERINGS OR RELEASE DATES BY JUNIPER AT THIS POINT IN TIME

- EVERYTHING IN A NUTSHELL
- FABRIC TOPOLOGY
- BLITZ OVERVIEW OF TODAY'S ROUTING
- "IP FABRIC ROUTING" IS A SPECIALIZED PROBLEM
- RIFT: ZERO OPEX ROUTING FOR SELF-DRIVING IP **CLOS FABRICS**

IN A NUTSHELL

- DATA CENTERS ARE A STRATEGIC ASSET FOR LARGE CORPORATIONS AND OPERATORS
 - IF THEY DON'T OWN THEIR CRITICAL DATA PROCESSING, THEIR DATA OWNER MAY OWN THEM IN THE FUTURE
- BUILDING DATA CENTERS NECESSITATES BUILDING FABRICS
 - LARGE FABRICS ARE BECOMING IP ONLY AND NEED TO BE ROUTED
- ROUTING OPEX FOR IP FABRICS IS SIGNIFICANT
 - TECHNICALLY COMPLICATED, NEITHER EFFICIENT NOR ROBUST
 - FEW AVAILABLE EXPERTS IN THE FIELD
 - "SELF DRIVING" FABRICS ARE NEEDED
 - ZERO CONFIGURATION, RESILIENCE, MAXIMUM GOODPUT, AS "SELF DRIVING" AS POSSIBLE
- JUNIPER IS WORKING ON OPEN STANDARD FOR ZERO OPEX, SELF-DRIVING IP FABRICS ROUTING
- ACCIDENTALLY, "EXPLODED CHASSIS BACKPLANE" PRESENTS THE SAME PROBLEM

FABRIC: A SPECIALIZED TOPOLOGY

- CLOS TOPOLOGIES ARE DOMINANT TODAY
- CURRENT STATE OF IP FABRIC ROUTING AFFAIRS
- REQUIREMENTS MATRIX FOR SELF-DRIVING IP FABRIC ROUTING

AFFAIRS G IP

CLOS TOPOLOGIES

- CLOS OFFERS WELL-UNDERSTOOD
 BLOCKING PROBABILITIES
- WORK DONE AT AT&T (BELL SYSTEMS) IN 1950s
- FULLY CONNECTED CLOS IS DENSE AND EXPENSIVE
- DATA CENTERS TODAY TEND TO BE VARIATIONS OF "FOLDED FAT-TREE"
 - INPUT STAGES = OUTPUT STAGES
 - CLOS IS "PARTIAL"
 - LINKS GET "FATTER" UP THE TREE

WHY NOT SOMETHING ELSE?

- TOROIDAL [AND DIAGONAL] MESHES HAVE LONG PATHS, SMALL BISECTION WIDTH AND POOR BLOCKING
 PROPERTIES
- DRAGONFLY IS VERY NOVEL AND UNPROVEN
 - SEEMINGLY ½ THROUGHPUT OF CLOS AT SAME CAPACITY DUE TO LOW ECMP
 - OUR SUGGESTION SHOULD WORK WELL IN A PRACTICAL MODIFICATION (ONE LEVEL CLOS AND DRAGONFLY CORE) IF NECESSARY

RIFT, Juniper Tech Club

BLITZ OVERVIEW OF TRADITIONAL ROUTING

LINK STATE & SHORTEST PATH FIRST DISTANCE & PATH VECTOR

LINK STATE AND SPF = DISTRIBUTED

COMPLEMENTS ON

- NODES
- LINKS
- PREFIXES
- EACH NODE ORIGINATES PACKETS WITH ITS TOPOLOGY ELEMENTS
- PACKETS ARE "FLOODED"
- "Newest" Version Wins
- EACH NODE "SEES" WHOLE TOPOLOGY
- EACH NODE "COMPUTES" REACHABILITY TO EVERYWHERE
- CONVERSION IS VERY FAST
- EVERY LINK FAILURE SHAKES WHOLE NETWORK (MODULO AREAS)
- FLOODING GENERATES EXCESSIVE LOAD FOR LARGE ADJACENCY FAN-OUTS
- PERIODIC REFRESHES (NOT STRICTLY NECESSARY)

REFIX

DISTANCE/PATH VECTOR = DIFFUSED

COMPUTATION

- PREFIXES "GATHER" METRIC WHEN PASSED ALONG LINKS
- EACH SINK COMPUTES "BEST" RESULT AND PASSES IT ON (ADD-PATH CHANGED THAT)
- A SINK KEEPS ALL COPIES, OTHERWISE IT WOULD HAVE TO TRIGGER "RE-DIFFUSION"
- LOOP PREVENTION IS EASY ON STRICTLY UNIFORMLY INCREASING METRIC
- IDEAL FOR ENFORCING "POLICY" RATHER THAN PROVIDE "MAX REACHABILITY"
- SCALES WHEN PROPERLY IMPLEMENTED TO MUCH HIGHER # OF ROUTES THAN LINK-STATE

CURRENT STATE OF ROUTING IN DC FABRICS

- SEVERAL OF LARGE DC FABRICS USE E-BGP WITH BAND-AIDS AS DE-FACTO IGP (RFC7938)
 - NUMBERING SCHEMES TO CONTROL "PATH HUNTING"
 - "LOOPING PATHS" (ALLOW-OWN-AS UNDER AS PRIVATE NUMBERING)
 - "RELAXED MULTI-PATH ECMP" SINCE ECMP OVER DIFFERENT AS IN EBGP DOES NOT WORK NORMALLY
 - ADD PATHS TO SUPPORT MULTI-HOMING, N-ECMP, PREVENT OSCILLATIONS
 - EFFORTS TO GET AROUND 65K ASES AND LIMITED PRIVATE AS SPACE
 - PROPRIETARY PROVISIONING AND CONFIGURATION SOLUTIONS, LLDP EXTENSIONS
 - "VIOLATIONS" OF FSM LIKE RESTART TIMERS AND MINIMUM-ROUTE-ADVERTISEMENT TIMERS
 - EMERGING WORK FOR "PEER AUTO-DISCOVERY" AND "SPF" DIAMETRICALLY OPPOSITE TO **BGP DESIGN PRINCIPLES**
 - RELIANCE ON "UPDATE GROUPS" ~ PEER GROUPS TO PREVENT WITHDRAWAL AND PATH HUNTING AFTER SERVER LINK FAILURES
- MANY LARGE CORPORATIONS RUN "FLAT" IGP (ISIS OR OSPF)
- YET OTHERS RUN BGP OVER IGP (TRADITIONAL ROUTING ARCHITECTURE)
- LESS THAN MORE SUCCESSFUL ATTEMPTS @ PREFIX SUMMARIZATION, CONTROL OF MICRO- AND **BLACK-HOLING**

REQUIREMENTS BREAKDOWN (RFC7938+) FOR A "ZERO OPEX

FAB Problem / Attempted Solution	BGP modified for DC	ISIS modified for DC	RIFT
01. As Close to Zero Necessary Configuration as Possible (Contradicts 02)	×	×	√(*)
02. Peer Discovery/Automatic Forming of Trees/Preventing Cabling Violations (Contradicts 01)			\checkmark
03. Minimal Amount of Routes/Information on ToRs	×	×	\checkmark
04. High Degree of ECMP (BGP needs lots knobs, memory, own-AS- path violations) and ideally NEC and LFA		\checkmark	\checkmark
05. Traffic Engineering by Next-Hops, Prefix Modifications	\checkmark	×	\checkmark
06. See All Links in Topology to Support PCE/SR		\checkmark	\checkmark
07. Carry Opaque Configuration Data (Key-Value) Efficiently	×		~
08. Take a Node out of Production Quickly and Without Disruption	×	~	~
09. Automatic Disaggregation on Failures to Prevent Black-Holing and Back-Hauling	×	X	~
10. Minimal Blast Radius on Failures (On Failure Smallest Possible Part of the Network "Shakes")	×	×	~
11. Fastest Possible Convergence on Failures	X	\checkmark	RIFT, Juniper Tech

RIFT: SELF DRIVING ROUTING ALGORITHM FOR CLOS

- GENERAL CONCEPT
- AUTOMATIC MIS-CABLING CONSTRAINTS
- AUTOMATIC DISAGGREGATION
- OPTIONAL HORIZONTAL LINKS
- AND MORE BEYOND THAT

"Just because the standard provides a cliff in front of you, you are not necessarily required to jump off it."

— Norman Diamond

LINK-STATE UP, DISTANCE VECTOR DOWN & BOUNCE

AUTOMATIC MIS-CABLING CONSTRAINTS

- AUTOMATIC REJECTION OF ADJACENCIES BASED ON MINIMUM CONFIGURATION
- PROTOCOL WILL WORK AS WELL IF LEVEL 0 IS ALLOWED TO CONNECT TO LEVEL 2 BUT OPTIMAL ROUTING WOULD NEED LARGER FIBS ON LEAFS

LEVEL

LEVEL

AUTOMATIC DISAGGREGATION

REMEMBER: SOUTH REPRESENTATION OF THE RED SPINES IS REFLECTED BY

- LOWER RED SPINE SEES THAT UPPER

OPTIONAL HORIZONTAL LINKS FOR LAYER

PROTECTION

- LEVELS CAN INSTALL OPTIONAL HORIZONTAL LINKS
- LEVEL 0 IS SPECIAL:
 - LEAF-2-LEAF CONNECTION THAT CANNOT BE USED EXCEPT FOR LEAF-2-LEAF TRAFFIC
- LEVEL > 0 USES HORIZONTAL LINKS FOR FAILURE PROTECTION ONLY
 - SINGLE NODE PROTECTION: NODE THAT LOST NORTHBOUND LINKS BUT HAS NEIGHBORS THAT CAN REACH HIGHER LAYERS USES THE HORIZONTAL LINK
 - N:N-1 PROTECTION: FULL MESH IN A LEVEL
 CAN PROVIDE UP TO N-2 NORTHBOUND
 PROTECTION

RIFT DOES ON TOP

- AUTOMATIC FLOOD REDUCTION
- LEAF-TO-LEAF BI-DIRECTIONAL SHORTCUTS
- POSSIBLE TRAFFIC ENGINEERING VIA "FLOODED DV OVERLAY" WITH POLICIES
- COMPLETELY MODEL BASED PACKET FORMATS
- CHANNEL AGNOSTIC DELIVERY, COULD BE QUICK, TCP, UDP
- PREFIXES TO TOPOLOGY ELEMENT MAPPING BASED ON HASH FUNCTIONS LOCAL TO EACH NODE
 - ONE EXTREME POINT IS PREFIX PER FLOODED ELEMENT = BGP UPDATE
- PURGING (GIVEN COMPLEXITY) IS OMITTED
- POLICY CONTROLLED KEY-VALUE STORE SUPPORT

SUMMARY OF RIFT ADVANTAGES

OPEN IETF STANDARD

- ADVANTAGES OF BOTH LINK-STATE AND DISTANCE VECTOR
 - FASTEST POSSIBLE CONVERGENCE
 - AUTOMATIC DETECTION OF TOPOLOGY
 - MINIMAL ROUTES ON TORS
 - HIGH DEGREE OF ECMP
 - FAST DE-COMISSIONING OF NODES
 - MAXIMUM PROPAGATION SPEED WITH FLEXIBLE # PREFIXES IN AN UPDATE

- NO DISADVANTAGES OF NEITHER LINK-**STATE NOR DISTANCE VECTOR**
 - REDUCED FLOODING
 - AUTOMATIC NEIGHBOR DETECTION
 - **UNIQUE RIFT ADVANTAGES**
 - AUTOMATIC DISAGGREGATION ON FAILURES
 - KEY-VALUE STORE
 - HORIZONTAL LINKS USED FOR PROTECTION
 - MINIMAL BLAST RADIUS ON FAILURES
 - CAN UTILIZE ALL PATHS THROUGH FABRIC WITHOUT LOOPING

IS THERE MORE THAN BITS OVER POWERPOINT

DETAILED DRAFT IN IETF

- HTTPS://DATATRACKER.IETF.ORG/DOC/DRAFT-PRZYGIENDA-**RIFT**
- PRE-PRODUCTION CODE AVAILABLE UNDER NDA
 - PLEASE TALK TO YOUR FRIENDLY SYSTEMS OR RESIDENT ENGINEER
- SINGAPORE IETF IS HOSTING A "DC ROUTING BOF" SESSION

JUNPer